- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Guan, Huanqin (3)
-
Sun, Shouheng (3)
-
Wei, Kecheng (2)
-
Agrawal, Mayank (1)
-
Harris, Cooro (1)
-
He, Jie (1)
-
Kim, Ju Ye (1)
-
Luo, Qiang (1)
-
Peterson, Andrew A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Guan, Huanqin; Harris, Cooro; Sun, Shouheng (, Accounts of Chemical Research)
-
Wei, Kecheng; Guan, Huanqin; Luo, Qiang; He, Jie; Sun, Shouheng (, Nanoscale)Given the continuous and excessive CO 2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO 2 to value-added chemicals. This review highlights recent advances in CO 2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO 2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO 2 conversion reaction: thermochemical CO 2 hydrogenation and electrochemical CO 2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H 2 , electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst–electrolyte interfaces. The review further covers recent studies in integrating CO 2 capture and conversion processes so that energy efficiency for the overall CO 2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO 2 conversion technologies as solutions to negative carbon emission and energy sustainability.more » « less
An official website of the United States government
