skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guan, Huanqin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work demonstrates a nanoparticle-enabled integration of air capture and conversion of CO2. Ambient CO2is captured in a KOH–ethylene glycol solution and then selectively reduced to formate under 50 °C and ambient pressure using Pd NPs. 
    more » « less
  2. Given the continuous and excessive CO 2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO 2 to value-added chemicals. This review highlights recent advances in CO 2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO 2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO 2 conversion reaction: thermochemical CO 2 hydrogenation and electrochemical CO 2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H 2 , electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst–electrolyte interfaces. The review further covers recent studies in integrating CO 2 capture and conversion processes so that energy efficiency for the overall CO 2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO 2 conversion technologies as solutions to negative carbon emission and energy sustainability. 
    more » « less